

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

$$x^{2} + (x+1)^{2} = 13$$

$$x^{2} + x^{2} + x + x + 1 = 13$$

$$2x^{2} + 2x + 1 = 13$$

$$2x^{2} + 2x - 12 = 0$$

$$(2x-4)(x+3) = 0$$
3

Using
$$y = x + 1$$

When $x = 2$, $y = 2 + 1 = 3$
When $x = -3$, $y = -3 + 1 = -2$

So x = 2 or x = -3

So the solutions are x = 2, y = 3 and x = -3, y = -2

Check:
equation 1:
$$3 = 2 + 1$$
 YES
and $-2 = -3 + 1$ YES
equation 2: $2^2 + 3^2 = 13$ YES
and $(-3)^2 + (-2)^2 = 13$ YES

- 1 Substitute x + 1 for y into the second equation.
- 2 Expand the brackets and simplify.
- **3** Factorise the quadratic equation.
- 4 Work out the values of x.
- 5 To find the value of *y*, substitute both values of *x* into one of the original equations.
- **6** Substitute both pairs of values of *x* and *y* into both equations to check your answers.

Example 2 Solve 2x + 3y = 5 and $2y^2 + xy = 12$ simultaneously.

$$x = \frac{5 - 3y}{2}$$

$$2y^2 + \left(\frac{5 - 3y}{2}\right)y = 12$$

$$2y^2 + \frac{5y - 3y^2}{2} = 12$$

$$4y^2 + 5y - 3y^2 = 24$$

$$y^2 + 5y - 24 = 0$$

$$(y+8)(y-3)=0$$

So
$$y = -8$$
 or $y = 3$

Using
$$2x + 3y = 5$$

When
$$y = -8$$
, $2x + 3 \times (-8) = 5$, $x = 14.5$
When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$

So the solutions are

$$x = 14.5$$
, $y = -8$ and $x = -2$, $y = 3$

Check:

equation 1:
$$2 \times 14.5 + 3 \times (-8) = 5$$
 YES
and $2 \times (-2) + 3 \times 3 = 5$ YES
equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES
and $2 \times (3)^2 + (-2) \times 3 = 12$ YES

1 Rearrange the first equation.

2 Substitute $\frac{5-3y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.

3 Expand the brackets and simplify.

4 Factorise the quadratic equation.

5 Work out the values of y.

6 To find the value of *x*, substitute both values of *y* into one of the original equations.

7 Substitute both pairs of values of *x* and *y* into both equations to check your answers.

Practice

Solve these simultaneous equations.

1
$$y = 2x + 1$$

 $x^2 + y^2 = 10$

$$\begin{aligned}
\mathbf{2} \quad y &= 6 - x \\
x^2 + y^2 &= 20
\end{aligned}$$

3
$$y = x - 3$$

 $x^2 + y^2 = 5$

4
$$y = 9 - 2x$$

 $x^2 + y^2 = 17$

5
$$y = 3x - 5$$

 $y = x^2 - 2x + 1$

6
$$y = x - 5$$

 $y = x^2 - 5x - 12$

7
$$y = x + 5$$

 $x^2 + y^2 = 25$

10
$$2x + y = 11$$

 $xy = 15$

Extend

11
$$x - y = 1$$

 $x^2 + y^2 = 3$

12
$$y-x=2$$

 $x^2 + xy = 3$

edexcel

Answers

1
$$x = 1, y = 3$$

 $x = -\frac{9}{5}, y = -\frac{13}{5}$

2
$$x = 2, y = 4$$

 $x = 4, y = 2$

3
$$x = 1, y = -2$$

 $x = 2, y = -1$

4
$$x = 4, y = 1$$

 $x = \frac{16}{5}, y = \frac{13}{5}$

5
$$x = 3, y = 4$$

 $x = 2, y = 1$

6
$$x = 7, y = 2$$

 $x = -1, y = -6$

7
$$x = 0, y = 5$$

 $x = -5, y = 0$

8
$$x = -\frac{8}{3}, y = -\frac{19}{3}$$

 $x = 3, y = 5$

9
$$x = -2, y = -4$$

 $x = 2, y = 4$

10
$$x = \frac{5}{2}, y = 6$$

 $x = 3, y = 5$

11
$$x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$$

 $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$

12
$$x = \frac{-1 + \sqrt{7}}{2}$$
, $y = \frac{3 + \sqrt{7}}{2}$
 $x = \frac{-1 - \sqrt{7}}{2}$, $y = \frac{3 - \sqrt{7}}{2}$